

FLOOD RISK ASSESSEMENT REPORT

No 20-26 Avon Rd, Dee Why NSW 2099

Prepared for: Gannet Developments C/- Walsh Architects E: scott@walsharchitects.com.au M: 0466 049 880

RISE CONSULTING ENGINEERS P. (02) 8057 9109 E. admin@riseengineers.com.au G03, 15-19 Atchison Street, St Leonards NSW 2065 www.riseengineers.com.au

Table of Contents

SECTION 1 – Introduction
1.1 - Work Outline
SECTION 2 – Site Information
2.1 – Site Location
2.2 – Proposed Development5
SECTION 3 – Flood Information background6
SECTION 4 – Hydrology7
SECTION 5 – Hydraulic Modelling & Analysis8
5.1 – Inflow Hydograph Model8
5.2 – Model Results
5.3 – Flood Hazard Category9
SECTION 6 – Flood Risk Management10
6.1 – Building Components and Method11
6.1.1 – Electrical & Mechanical Equipment11
6.1.2 – Heating & Air-conditioning Systems11
6.1.3 – Flood Compatible Materials13
6.2 – Flood Planning Levels14
6.3 – Emergency Management14
SECTION 7 – Conclusions & Recommendations15
APPENDIX – A
APPENDIX – B
APPENDIX – C
APPENDIX – D
APPENDIX – E

30 June 2021

REV	DATE
A	14-09-2021
В	02-02-2022

Job No: 21066 Prepared for: ACN 647 465 236 PTY LTD C/- Walsh Architects E: scott@walsharchitects.com.au M: 0466 049 880

Re: Flood Impact Assessment of 20-26 Avon Rd, Dee Why

SECTION 1 – Introduction

1.1 - Work Outline

Rise Consulting Engineers have been commissioned to undertake a Flood Risk Assessment Report and prepare stormwater drainage concept plan for the Proposed development at 20-26 Avon Rd, Dee Why NSW 2099.

As identified by council, the site is flood prone. The site's location is classified as a high-risk flood planning precinct. This means mitigating measures must be implemented to minimize any losses from flooding. Such mitigating measures include: the use of flood compatible materials in construction, the preparation of a flood evacuation plan and the installation of a flood warning system.

Northern Beaches Council has undertaken the hydrologic and hydraulic assessment and has provided 'depth x velocity' transects for the properties pertaining to the existing condition (attached Appendix 'E'). This report has been prepared as supporting documentation in the assessment of the proposed works with respect to the requirements of the Warringah Development Control Plan (2011) – Chapter E11 – Flood Prone Land.

SECTION 2 – Site information

2.1 – Site Location

The proposed development site is located within Northern Beaches Council and is identified as 20-26 Avon Rd, Dee Why NSW 2099. The subject site has two street frontages; Richmond Avenue to the North and Avon Road to the east. The site has a total site area of approximately 1535 m². Figure 1 shows the site's location and the overland flow path (in red arrows).

Figure 1– Approximate Location of Site and overland flow path

2.2 – Proposed Development

Reference to architectural plans prepared for the development by Walsh Architects (Rev.: 'E', Dated: 27/01/2022) depicts the works to consist of the demolition of all structures on the sites, and the construction of a four-storey residential flat building with a single-level of basement.

Vehicular access to the basement is via a driveway ramp and crossover to Richmond Avenue in the north-western corner of the site. The podium level has been elevated with respect to adjacent existing natural ground levels. The building footprint features a 4.5 metre setback to the western boundary, and a 2.0-meter clear setback to the south.

Figure 2 – Proposed Site Plan

SECTION 3 – Flood Information Background

3.1 – Council has identified that the site is located in a known flood affected area.

3.2 – Council Flood Map indicates that the site is inundated during the 1% Annual Exceedance Probability (1% AEP) and Probable Maximum Flood (PMF).

3.3 – Council has classified the site to be in a "High Risk Flood Planning Precinct".

3.4 – Council has advised the 100 year flood depths. Refer to Appendix. B.

3.5 – Council has advised that the Flood Planning Level (FPL) for all new habitable floors for this site shall be adopted as 500mm above the relevant 100 year flood level. Based on the Warringah Development Control Plan E11 Flood Prone Land Clause D. Car Parking: all enclosed car parks (including basement carparks) must be protected from inundation up to the Flood Planning Level. All access, ventilation, driveway crests and any other potential water entry points to any enclosed car parking shall be above the Flood Planning Level.

SECTION 4 – HYDROLOGY

Hydrologic and hydraulic assessment for the existing condition were undertaken by Northern Beaches Council, and '*depth x velocity*' transects were given at a number of locations throughout the property.

The 'depth x velocity' data provided by Council was plotted and integrated using numerical methods (trapezoidal rule) to derive flow rates through the site for the 1% Annual Exceedance Probability (AEP) storm event. The flow rates provided were for the catchment to the south-west of the site. A steady inflow hydrograph of $1.32m^3/s$ was derived from the Council data and used for subsequent hydraulic modelling as presented in Figure '3' below.

Figure 3: Inflow hydrograph

SECTION 5 – Hydraulic Modelling & Analysis

HEC-RAS 6.0.1 software was used in developing the 1D and 2D hydraulic models. HEC-RAS, developed by the U.S Army Corps of Engineers Hydrologic Engineering Centre is internationally recognised as one of the leading specialised analysis suites in performing two-dimensional unsteady flow calculations. HEC-RAS solves the full, dynamic Saint Venant equation using an implicit, finite difference method.

5.1 – Inflow Hydrograph Model

The peak inflow as derived from the Council data was used for subsequent hydraulic modelling. The inflow was introduced upstream of the site, and maintained for a 10-minute simulation period. A one-by-one metre mesh spacing was used for the two-dimensional grid, however, mesh refinement regions with half-metre grid spacing were introduced in areas of interest.

Table '1' depicts the Manning's roughness applied in this model to various surfaces.

Table 1: Manning's 'n'

Surface Type	Manning's 'n'
General Urban Environment	0.05
Structures	Complete
	blockage to flow

Reference to concept stormwater drainage plans prepared by Rise Consulting Engineers (Job No.: 21066, Rev.: 'E', Dated: 02/02/2022) highlights significant drainage assets proposed as a part of the works in catering to overland flows in the western setback of the proposed development. Whilst these assets have ample hydraulic capacity to deal with piping of overland flow for more frequent storm events, these assets have not been considered in the modelling of the 1% AEP storm. This is an inherently conservative approach as pits and pipes may readily become blocked by moving debris during large flood events.

The existing dwellings, garages and outbuildings on the site were modelled as complete blockages to flow by modifying the underlying Digital Elevation Model (DEM). Similarly, structures on neighbouring properties were also modelled as blockages with their location derived from a combination of survey data and aerial imagery.

The proposed residential flat building was modelled as a blockage by modifying the underlying DEM. Two grassed swales were also modelled in the western and southern boundaries of the proposed development. The swales were modelled with a half-percent fall at the base, draining to the north and west respectively. These swales have been introduced as overland flow paths in mitigating any adverse impact as a result of the

development. A flood wall was also modelled, located adjacent the western boundary and limited to the north-west of the site.

5.2- Model Results

The developed HEC-RAS model was used in determining the flood levels and flood extents for the 1% AEP storm event for the pre- and post-development conditions. The flood maps for flooding depth, flood velocities and depth *x* velocity coefficients for the pre- and post-development conditions have been presented in Appendix 'E' of this report. Flood hazard categorisation mapping has also been provided for both pre- and post-development conditions. Flood difference mapping has also been provided comparing changes to flood levels for the pre- versus post-development conditions.

5.3 – Flood Hazard Category

The flood hazard category, as dictated by the New South Wales Floodplain Development Manual (2005) is a function of both flood depth and flow velocity. A plot showing the relationship between these two variables and the various hazard categories is presented in figure '4'.

Figure 4: Provisional Hydraulic Hazard Categories

This figure has been derived from the Australian Rainfall & Runoff *A Guide to Flood Estimation* (2019) and outlines various hazard categories.

Reference to flood hazard mapping provided for the post-development scenario in Appendix 'A' readily highlights that flood hazards are generally limited on the site and are a **H1** category. This category is generally deemed safe for people, vehicles and buildings. A limited region of the site, over the line of the proposed swale in the western setback features a **H2** flood hazard category.

SECTION 6 – Flood Risk Management

The proposed *residential* flat building has been assessed with respect to the requirements of the Warringah Development Control Plan (2011) – Chapter E11 – *Flood Prone Land.*

The site is inundated by the 1% AEP storm event, however does not exhibit high hydraulic hazards; as such it is deemed a *Medium Flood Risk Precinct*.

Development Control		Proposed
Flood effects caused by Development	A1	Reference to pre-development versus post-development flood difference mapping presented in Appendix 'A' of this report readily highlights that no <i>significant</i> increase in flood levels is anticipated on neighbouring allotments as a result of the development. Increases less than 20mm are generally deemed acceptable as they fall within the error tolerance of 2D hydraulic modelling as per Australian Rainfall and Runoff Guidelines (AR&R 2019). Significant (> 20mm) increases in flood levels in the public domain are observed in both Richmond Avenue and Avon Road at the point of discharge of the proposed swales. However notably, there is also significant decreases in the flood levels on Avon Road to the east. The flow regime observed in the pre-development results depicts flows entering the site from the south-west, and predominantly traversing east through setbacks between the existing dwellings to Avon Road. This is generally to be anticipated as the fall of the site is greater in the east- west direction than the north-south. The post-development condition sees the majority of flows directed to the north in the overland flow path in the western setback of the proposed residential flat building.
	A2	Given than 2D hydraulic modelling has been used in the preparation of flood difference mapping, and no <i>significant</i> increase of flood levels are anticipated on neighbouring dwellings, there is no net loss of flood storage associated with the proposed development. This is to be

Development Control		Proposed		
		expected as cutting of natural ground levels has been proposed in		
		facilitating the swales in the western and southern setbacks.		
Buildings Components	B1	The proposed residential flat building shall be constructed of flood		
and Structural		compatible materials as outlined in section 7.2.3 of this report up to the		
Soundness		specified Flood Planning Level (FPL) of 7.10m AHD. The proposed		
		basement shall be suitably waterproofed to this level.		
	B2	A suitably qualified and practising structural engineer shall prepare a		
		report providing details of hydraulic forces caused by floodwater, debris		
		and buoyancy up to and including the FPL specified. The proposed report		
		shall include certification explicitly dictating that the proposed structure		
		is able to withstand such forces and is to be issued prior to construction.		
	B3	All electrical and mechanical equipment and other services are to be		
		constructed in accordance with the recommendations outlined in section		
		7.2 of this report up to the specified Flood Planning Level of 7.10m AHD		
Floor Levels	C1	A minimum habitable floor level or Flood Planning Level of 7.10m AHD		
		shall be adopted for the development which includes 500mm freeboard		
		to the upstream 1% AEP flood level of 6.60m AHD.		
	C3	The proposed development footprint has been sited with sufficient		
		setbacks to the western and southern boundaries to allow conveyance of		
		flood waters. Reference to flood difference mapping highlights no		
		adverse impact associated with flood afflux of loss of flood storage is		
	C4	Anticipated as a result of the proposed development.		
	C4			
Can Daultin a	C6			
Car Parking	DI	Not applicable – no open carparks areas or carports are proposed as a		
	53	Not applicable		
	D2	Not applicable		
	D3	Not applicable		
		Not applicable		
	D5	A defensive creat shall be provided to the access ramp to the proposed		
	00	A defensive crest shall be provided to the access famp to the proposed		
		500mm freeboard to the relevant unstream 1% AED flood level of 5.80m		
		AHD		
Emergency Response	F1	The property exhibits a flood hazard category of H2 and thus a Flood		
		Emergency Assessment is not required. Flooding on the site is generally		
		limited in hazard and evacuation for storm events up to the 1% AEP is		
		unlikely.		
		Given the multi-storey nature of the proposed development, refuge may		
		readily be sought by occupants on upper floors of the building which are		
		accessible via internal stair wells.		
Fencing	F1	All fencing is to be of pool-style or louvre-style construction up to the		
		relevant 1% AEP flood level, with the exception of the flood wall as		
		denoted in Appendix 'C' of this report.		
Storage of Goods	G1	Not applicable		
Pools	H1	Not applicable		

6.1 – Building Components and Method

All structures of the proposed residential flat building development are to be constructed of flood compatible building components below the specified Flood Planning Level.

6.1.1 – Electrical & Mechanical Equipment

Main power supply subject to the approval of the relevant authority the incoming main commercial power service equipment, including all metering equipment, shall be located above the relevant flood level. Means shall be available to easily disconnect the dwelling from the main power supply.

All wiring, power outlets, switches, etc., should, to the maximum extent possible, be located above the relevant flood level. All electrical wiring installed below the relevant flood level should be suitable for continuous submergence in water and should contain no fibrous components. Earth core leakage systems (or safety switches) are to be installed. Only submersible-type splices should be used below the relevant flood level. All conduits located below the relevant designated flood level should be so installed that they will be self-draining if subjected to flooding.

All equipment installed below or partially below the relevant flood level should be capable of disconnection by a single plug and socket assembly. Should any electrical device and/or part of the wiring be flooded it should be thoroughly cleaned or replaced and checked by an approved electrical contractor before reconnection.

6.1.2 – Heating & Air-conditioning Systems

Heating and air conditioning systems should, to the maximum extent possible, be installed in areas and spaces of the house above the relevant flood level. When this is not feasible every precaution should be taken to minimise, the damage caused by submersion according to the following guidelines.

Heating systems using gas or oil as a fuel should have a manually operated valve located in the fuel supply line to enable fuel cut-off. The heating equipment and fuel storage tanks should be mounted on and securely anchored to a foundation pad of sufficient mass to overcome buoyancy and prevent movement that could damage the fuel supply line. All storage tanks should be vented to an elevation of 600 millimetres above the relevant flood level.

All ductwork located below the relevant flood level should be provided with openings for drainage and cleaning. Self-draining may be achieved by constructing the ductwork on a suitable grade. Where ductwork must pass through a water-tight wall or floor below the

relevant flood level, the ductwork should be protected by a closure assembly operated from above relevant flood level.

6.1.3 – Floo	d Compatible	Materials

Building Component	Flood Compatible Material
Flooring & Subfloor Structure	 — Suspended reinforced concrete slab
	 Monolithic slab on grade construction
Floor Covering	— Clay tiles
	 Concrete, precast or in-situ
	— Concrete tiles
	 Epoxy, formed in place
	 Mastic flooring, formed in place
	 Rubber sheets or riles with chemical set
	adhesives
	 — Silicone floors formed in-place
	 Vinyl sheets or tiles with chemical set
	adhesives
	 Ceramic tiles, fixed with mortar or chemical
	set adhesives
	 Asphalt tiles, fixed with water resistant
	adhesive.
Wall Structure	 Solid brickwork, blockwork, reinforced
	concrete or mass concrete.
Roofing structure (for situations where the	 Reinforced concrete construction
relevant flood level is above the ceiling)	— Galvanised metal construction
Doors	 Solid panel with waterproof adhesive
	 Flush door with marine ply filled with closed
	cell foam
	— Painted metal construction
	Aluminium or galvanised steel frame.
Wall & Ceiling lining	— Fibro-cement board
	— Brick, face or glazed
	— Clay tile glazed in waterproof mortar
	— Concrete
	— Concrete block
	Steel with waterproof applications
	 Stone, natural solid or veneer with
	Waterproof grout
	- Glass blocks
	— Glass Plactic chaoting or wall with waterproof
	adhesives
Insulation Windows	— Foam (closed cell type)
	 Aluminium frame with stainless steel rollers
	or similar corrosion and water resistant
	materials.
Nails, Bolts, Hinges & Fittings	Brass, nylon or stainless steel
	 Removable pin hinges
	 Hot dipped galvanised steel wire nails or
	similar.

6.2 – Flood Planning Levels

All precautions within the planning and design stages of the proposed development should be taken to ensure that the risks of flood impacts are minimised.

The minimum floor levels for the proposed development have been set to meet the requirements of Northern Beaches Council.

Table 2 below shows the minimum floor level for the proposed development in accordance with Council's DCP.

Building Element	Design Requirement	100-year ARI Level/Flood Planning Level	Average Free board	Design Finish Floor Level
Minimum Habitable Floor Level	100-year ARI plus 0.5m freeboard (Based on Council DCP)	Lot 20 – 6.84m Lot 24 – 6.50m Lot 26 – 5.54m	1.056m	7.35m
Minimum Driveway Crest Level	Flood Planning Level plus 0.10m freeboard	6.04m	0.1m	6.14m

Table 2 – Proposed Planning Levels

6.3 – Emergency Management

Early evacuation is the preferred management strategy for the proposed development in this area. The residents shall be warned as soon as possible and made aware of rising water levels so they can evacuate early to a place of refuge above the PMF flood waters, in the surrounding area. Residents shall evacuate to higher ground at Short Street, towards south from the site.

Up to the 100-year ARI storm event, the occupants can seek refuge within the development being above the flood water by a 500mm freeboard.

It is recommended that adequate warning signs shall be placed in areas which are visible to ensure occupants are educated with regards to evacuation locations and procedures. All residential tenancies within the subject site are also to be made aware and educated about flood evacuation requirements and procedures. Further details are given in the attached Flood Evacuation Plan, Stormwater Drainage Plan and Details.

Residents should also familiarise with the following emergency contact numbers:

General SES helpline: 132 500 Critical emergency: 000 for Police or Ambulance

SECTION 7 – Conclusions & Recommendations

This report has considered the impacts of overland flooding with respect to the proposed residential flat building development at 20-26 Avon Road Dee Why. Considerations include flood related requirements adopted by Northern Beaches Council, as well as potential impacts on neighbouring properties.

Hydrologic data was obtained from Northern Beaches Council and subsequently used for hydraulic 2D modelling using HEC-RAS. One metre DEM data of the catchment was obtained and utilised in the analysis.

A number of hydraulic control structures were incorporated into the development including swales adjacent the southern and western boundaries, as well as a flood wall in line with the north-western fence. No adverse impacts associated with the development and changes to the flood regime of the overland flow path are anticipated.

Prepared by:

Attorad

Azadeh Moradi B. Eng. (Civil), M.I.E(Aust). C.P.Eng, N.E.R Senior Structural/Civil Engineer

Reviewed by:

Omid Safai B. Eng. (Civil), M.E.Stud, M.I.E(Aust), C.P.Eng, N.E.R, APEC Engineer IntPE(Aus), Building Practitioner VBA, RPEQ Director

APPENDIX – A

Development architectural plans

20-26 AVON ROAD, DEE WHY

APARTMENT BUILDING - 23 APARTMENTS

<u>COM</u>	<u>PLIANCE</u>	TABLE	
ADG 3E-1(1) 3F-1(1) 4A-1(3) 4B-2(1) 4C-1(1) 4D-1(1) 4D-3(1-4 4E-1(1) 4G-1(1)	OBJECTIVE DEEP SOIL BUILDING SEI 2 HOUR SOLA NO SUN CROSS VENT CEILING HEIG APARTMENT ROOM SIZES POS SIZES STORAGE	PARATION YES AR ACCESS YES ILATION YES ARACCESS YES AREAS YES AREAS YES YES YES YES YES	
LEP 4.3 5.3 6.1 6.2 6.3 6.4	CLAUSE HEIGHT OF B DEVELOPMEN ACID SULFAT EARTHWORK FLOOD PLANN DEVELOPMEN	COMPLIES?UILDINGSNONT NEAR ZONE BOUNDARIESYESE SOILSYESSYESNINGYESNT ON SLOPING LANDYES	
DCP B2 B5 B5 B5 B5 B7 B7 D1	CLAUSE NUMBER OF S SIDE BOUND/ SIDE BOUND/ SIDE BOUND/ FRONT BOUN SECONDARY LANDSCAPED	COMPLIES?STORIESYESARY SETBACKS - SOUTH BASEMENTYESARY SETBACKS - SOUTH BUILDINGYESARY SETBACKS - WEST BASEMENTYESARY SETBACKS - WEST BUILDINGYESIDARY SETBACKS - RICHMOND RDYESFRONT BOUNDARY - AVON RDYESO OPEN SPACENO	
		DRAWING SHEETS	
SHEE	TNUMBER	R SHEET NAME	REVISIO
l	DA000	COVER PAGE	D
	DA010	SITE ANALYSIS	A
I	DA015	HEIGHT MAP	A
	DA016		A
			A
	DA030	BASEMENT PLAN	
	DA101	GROUND FLOOR PLAN	E
	DA102	LEVEL 1 PLAN	D
	DA103	LEVEL 2 PLAN	D
l	DA104	ATTIC PLAN	С
I	DA105	ROOF PLAN	D
	DA201		
		SECTIONS	E
	DA300	FLEVATIONS	F
	DA301	ELEVATIONS	D
	DA401	AREA CALCULATIONS - LANDSCAPE	D
	DA500	SHADOW DIAGRAMS - 9AM JUNE 21ST	С
	DA502	SHADOW DIAGRAMS - 12PM JUNE 21ST	С
Ī	DA503	SHADOW DIAGRAMS - 3PM JUNE 21ST	С
	DA550	VIEWS FROM SUN - JUNE 21ST	C
	DA551	VIEWS FROM SUN - JUNE 21ST	C
	DA332		
		ADG COMPLIANCE	С С
			•

Registered Architect ACT 2624 NSW 10366 scott@walsharchitects.com.au 0466 049 880

Number

DA015

Scale 1 : 1000 @ A1 1 : 2000 @ A3

Sheet Name HEIGHT MAP

This drawing is copyright and remains the property of Walsh Architects. This drawing is for development application purposes only and not for tender or construction. No.

11m HEIGHT - 18 AVON RD 0A016 @ A1

A SECTION A DA016 1 : 200 @ A1

PHOTO OF 18 AVON RD

Project: 20-26 AVON ROAD, DEE WHY APARTMENT BUILDING - 26 APARTMENTS Client: ACN 647 465 236 PTY LTD

PHOTO OF 26 RICHMOND AVE

Scale As indicated @ A1 As indicated @ A3 Sheet Name CONTEXT ANALYSIS

This drawing is copyright and remains the property of Walsh Architects. This drawing is for development application purposes only and not for tender or construction.

No. Number DA016

Date 21.06.21

Project: 20-26 AVON ROAD, DEE WHY **APARTMENT BUILDING - 23 APARTMENTS** Client: ACN 647 465 236 PTY LTD

Registered Architect ACT 2624 NSW 10366

Scale

1 : 100 @ A1

Sheet Name DEMOLITION PLAN

No. Number DA020

This drawing is copyright and remains the property of Walsh Architects. This drawing is for development application purposes only and not for tender or construction.

NUMBER UNIT TYPEGUIDE TO TRAFFIC OF UNITSVISTOR DEN PARKING RATE1 BED31.82 BED98.1
1 BED 3 1.8 0.6 2 BED 9 8.1 1.8
1 BED 3 1.8 0.6 2 BED 9 8.1 1.8
2 BED 9 8.1 1.8
3 BED 10 14 2
STUDIO 1 0.6 0.2
23 24.5 4.6

Ζ

ш

>

 \triangleleft

 \square

Z

Ο

 \geq

 \bigcirc

 \sim

Description ISSUE FOR DEVELOPMENT APPLICATION PLANS WITHOUT PREJUDICE PLANS WITHOUT PREJUDICE PLANS FOR LEC

Date 21.06.21 02.12.21 10.12.21 27.01.22 Rev.

D

ISSUE FOR DEVELOPMENT APPLICATION

Date 21.06.21 19.11.21 10.12.21 27.01.22

Rev. D

 \square

 \boldsymbol{Z}

 \triangleleft

 \square

Z

 \bigcirc

 \geq

 \bigcirc

 \sim

DA201

 $\Box \Box$

 \square

~ <u>^</u>	~~_
Rev.	
D	

Description ISSUE FOR DEVELOPMENT APPLICATION PLANS WITHOUT PREJUDICE PLANS WITHOUT PREJUDICE PLANS FOR LEC

Date 21.06.21 19.11.21 10.12.21 27.01.22

D

DA201

ш

 \square

Description ISSUE FOR DEVELOPMENT APPLICATION PLANS WITHOUT PREJUDICE PLANS FOR LEC

Date 21.06.21 10.12.21 27.01.22

Rev. С

DA201

Date 21.06.21 19.11.21 10.12.21 27.01.22

Rev. D

DA201 1 : 200 @ A3 E

This drawing is copyright and remains the property of Walsh Architects. This drawing is for development application purposes only and not for tender or construction.

·v~

27.01.22

PLANS FOR LEC

·v~

·v~

Client: ACN 647 465 236 PTY LTD

Description PLANS WITHOUT PREJUDICE PLANS WITHOUT PREJUDICE PLANS WITHOUT PREJUDICE 1 : 200 @ A3 PLANS FOR LEC This drawing is copyright and remains the property of Walsh Architects. This drawing is for development application purposes only and not for tender or construction.

 $\sim \sim$

 $\gamma \sim$

`Y~

`**γ**~∕

ATTIC RL. 16.350

LEVEL 2 RL. 13.350

LEVEL 1 RL. 10.350

GROUND FLOOR

RL. 7.350

BASEMENT LEVEL

RL. 4.300

ATTIC RL. 16.350

LEVEL 2 RL. 13.350

LEVEL 1 RL. 10.350

GROUND FLOOR

RL. 7.350

BASEMENT LEVEL RL. 4.300

Date 19.11.21 02.12.21 10.12.21 27.01.22

Rev. Ε

γ~∕

Sheet Name

SECTIONS

This drawing is copyright and remains the property of Walsh Architects. This drawing is for development application purposes only and not for tender or construction.

·√~∕

`v~

·v~

`**~**~

`γ~∕

`v~

ATTIC RL. 16.350

LEVEL 2 RL. 13.350

LEVEL 1 RL. 10.350

RL. 7.350

BASEMENT LEVEL

RL. 4.300

Description ISSUE FOR DEVELOPMENT APPLICATION PLANS WITHOUT PREJUDICE PLANS FOR LEC

Date 21.06.21 10.12.21 27.01.22

Rev. С

Project: 20-26 AVON ROAD, DEE WHY APARTMENT BUILDING - 23 APARTMENTS Client: ACN 647 465 236 PTY LTD

Registered Architect ACT 2624 NSW 10366

Description PLANS WITHOUT PREJUDICE PLANS WITHOUT PREJUDICE PLANS WITHOUT PREJUDICE PLANS FOR LEC

Date 19.11.21 02.12.21 10.12.21 27.01.22

Rev. Ε

1 WESTERN ELEVATION DA301 1 : 100 @ A1

<u>OPEN SPACE</u> 20 m²	

LANDSCAPE AREAS						
E	AREA	% OF SITE AREA				
CAPE	4 m²	0.3%				
PACE	562 m²	36.6%				
	566 m ²	36.9%				

AREA INCLUDES PLANTERS OVER BASEMENT. PREVIOUS DA ON THIS SITE (DA 2017/0198) WAS APPROVED ON **38.8%**

Description ISSUE FOR DEVELOPMENT APPLICATION PLANS WITHOUT PREJUDICE PLANS WITHOUT PREJUDICE

Date 21.06.21 02.12.21 10.12.21 27.01.22

Rev. D

·v~

 \sim

~

С

Project: 20-26 AVON ROAD, DEE WHY APARTMENT BUILDING - 23 APARTMENTS Client: ACN 647 465 236 PTY LTD

Registered Architect ACT 2624 NSW 10366

Description ISSUE FOR DEVELOPMENT APPLICATION PLANS WITHOUT PREJUDICE PLANS FOR LEC

Date 21.06.21 10.12.21 27.01.22

Rev. С

2 HOUR SOLAR ACCESS					
SOLAR ACCESS NUMBER					
No 8					
Yes 15					

ISSUE FOR DEVELOPMENT APPLICATION PLANS WITHOUT PREJUDICE PLANS FOR LEC

Date 21.06.21 10.12.21 27.01.22

`**y**~

`**γ**~∕

·v~

Rev. С

Project: 20-26 AVON ROAD, DEE WHY **APARTMENT BUILDING - 23 APARTMENTS** Client: ACN 647 465 236 PTY LTD

Scale 1 : 200 @ A1 1 : 400 @ A3 Sheet Name EXTERNAL FINISHES

This drawing is copyright and remains the property of Walsh Architects. This drawing is for development application purposes only and not for tender or construction.

APPENDIX – B

Flood Information From Council

FLOOD INFORMATION REQUEST – COMPREHENSIVE

Property: 20 Avon Road DEE WHY NSW 2099
Lot DP: Lot 4 DP 104820
Issue Date: 31/05/2021
Flood Study Reference: Dee Why South Catchment Flood Study 2013, Cardno

Flood Information for lot¹:

Flood Risk Precinct – See Map A

Flood Planning Area – See Map A

Maximum Flood Planning Level (FPL) ^{2, 3, 4}: 7.35 m AHD

<u>1% AEP Flood</u> – See Flood Map B

1% AEP Maximum Water Level ^{2, 3}: 6.85 mAHD

1% AEP Maximum Depth from natural ground level³: 0.33 m

1% AEP Maximum Velocity: 1.85 m/s

1% AEP Hydraulic Categorisation: Floodway See Flood Map D

Probable Maximum Flood (PMF) – See Flood Map C

PMF Maximum Water Level ⁴: 7.80 m AHD

PMF Maximum Depth from natural ground level: 1.11 m

PMF Maximum Velocity: 3.48 m/s

PMF Hydraulic Categorisation: Floodway See Flood Map E

Issue Date: 31/05/2021

Page 1 of 15

FLOOD LEVEL POINTS

Note: Cadastre Lines (Source: NSW Government Land and Property Information), flood levels/extents (Source: Dee Why South Catchment Flood Study 2013, Cardno) and aerial photography (Source: NearMap 2014) are indicative only.

Flood Levels

ID	5% AEP Max WL (m AHD)	5% AEP Max Depth (m)	1% AEP Max WL (m AHD)	1% AEP Max Depth (m)	1% AEP Max Velocity (m/s)	Flood Planning Level (m)	PMF Max WL (m AHD)	PMF Max Depth (m)	PMF Max Velocity (m/s)
1	N/A	N/A	6.8	0.02	0.68	7.3	7.13	0.33	0.31
2	N/A	N/A	6.84	0.21	0.49	7.34	7.60	0.97	1.43
3	N/A	N/A	N/A	N/A	N/A	N/A	6.72	0.33	0.32
4	N/A	N/A	N/A	N/A	N/A	7.3	7.34	0.29	1.90

WL - Water Level

PMF – Probable Maximum Flood

N/A = no peak water level/depth/velocity available in flood event

Climate Change Flood Levels (30% Rainfall intensity and 0.9m Sea Level Rise)

ID	CC 1% AEP Max WL (m AHD)	CC1 % AEP Max Depth (m)
1	N/A	N/A
2	6.91	0.28
3	N/A	N/A
4	N/A	N/A

WL – Water Level

PMF – Probable Maximum Flood

N/A = no peak water level/depth/velocity available in flood event.

A variable Flood Planning Level might apply. Freeboard is generally 0.5m above the maximum 1% AEP water level. However for overland flow with a depth less than 0.3m and a VelocityxDepth product less than 0.3m²/s, a freeboard of 0.3m may be able to be justified.

FLOOD INFORMATION REQUEST – COMPREHENSIVE

Property: 24 Avon Road DEE WHY NSW 2099 Lot DP: Lot 2 DP 104820 Issue Date: 31/05/2021 Flood Study Reference: Dee Why South Catchment Flood Study 2013, Cardno

Flood Information for lot¹:

Flood Risk Precinct – See Map A

Flood Planning Area – See Map A

Maximum Flood Planning Level (FPL) ^{2, 3, 4}: 7.0 m AHD

<u>1% AEP Flood</u> – See Flood Map B

1% AEP Maximum Water Level ^{2, 3}: 6.5 mAHD

1% AEP Maximum Depth from natural ground level³: 0.58 m

1% AEP Maximum Velocity: 1.72 m/s

1% AEP Hydraulic Categorisation: Floodway See Flood Map D

Probable Maximum Flood (PMF) – See Flood Map C

PMF Maximum Water Level 4: 7.35 m AHD

PMF Maximum Depth from natural ground level: 1.38 m

PMF Maximum Velocity: 3.19 m/s

PMF Hydraulic Categorisation: Floodway See Flood Map E

FLOOD LEVEL POINTS

Note: Cadastre Lines (Source: NSW Government Land and Property Information), flood levels/extents (Source: Dee Why South Catchment Flood Study 2013, Cardno) and aerial photography (Source: NearMap 2014) are indicative only.

Flood Levels

ID	5% AEP Max WL (m AHD)	5% AEP Max Depth (m)	1% AEP Max WL (m AHD)	1% AEP Max Depth (m)	1% AEP Max Velocity (m/s)	Flood Planning Level (m)	PMF Max WL (m AHD)	PMF Max Depth (m)	PMF Max Velocity (m/s)
1	N/A	N/A	6.5	0.21	0.04	7.0	7.13	0.63	0.10
2	6.36	0.33	6.5	0.48	0.38	7.0	7.3	1.27	1.06
3	N/A	N/A	N/A	N/A	N/A	6.05	6.34	0.38	2.71
4	N/A	N/A	N/A	N/A	N/A	6.01	6.36	0.49	0.36

WL - Water Level

PMF – Probable Maximum Flood

N/A = no peak water level/depth/velocity available in flood event

Climate Change Flood Levels (30% Rainfall intensity and 0.9m Sea Level Rise)

ID	CC 1% AEP Max WL (m AHD)	CC1 % AEP Max Depth (m)
1	6.58	0.25
2	6.58	0.56
3	N/A	N/A
4	N/A	N/A

WL – Water Level

PMF – Probable Maximum Flood

N/A = no peak water level/depth/velocity available in flood event.

A variable Flood Planning Level might apply. Freeboard is generally 0.5m above the maximum 1% AEP water level. However for overland flow with a depth less than 0.3m and a VelocityxDepth product less than 0.3m²/s, a freeboard of 0.3m may be able to be justified.

FLOOD INFORMATION REQUEST – COMPREHENSIVE

Property: 26 Avon Road DEE WHY NSW 2099
Lot DP: Lot 1 DP 104820
Issue Date: 18/06/2021
Flood Study Reference: Dee Why South Catchment Flood Study 2013, Cardno

Flood Information for lot¹:

Flood Risk Precinct – See Map A

Flood Planning Area – See Map A

Maximum Flood Planning Level (FPL) ^{2, 3, 4}: 7.0 m AHD

<u>1% AEP Flood</u> – See Flood Map B

1% AEP Maximum Water Level ^{2, 3}: 6.5 mAHD

1% AEP Maximum Depth from natural ground level³: 0.32 m

1% AEP Maximum Velocity: 1.35 m/s

1% AEP Hydraulic Categorisation: Floodway See Flood Map D

Probable Maximum Flood (PMF) – See Flood Map C

PMF Maximum Water Level 4: 7.35 m AHD

PMF Maximum Depth from natural ground level: 0.85 m

PMF Maximum Velocity: 2.21 m/s

PMF Hydraulic Categorisation: Floodway See Flood Map E

Issue Date: 18/06/2021

Page 1 of 14

FLOOD LEVEL POINTS

Note: Cadastre Lines (Source: NSW Government Land and Property Information), flood levels/extents (Source: Dee Why South Catchment Flood Study 2013, Cardno) and aerial photography (Source: NearMap 2014) are indicative only.

Flood Levels

ID	5% AEP Max WL (m AHD)	5% AEP Max Depth (m)	1% AEP Max WL (m AHD)	1% AEP Max Depth (m)	1% AEP Max Velocity (m/s)	Flood Planning Level (m)	PMF Max WL (m AHD)	PMF Max Depth (m)	PMF Max Velocity (m/s)
1	N/A	N/A	5.54	0.16	0.27	6.04	6.04	0.66	0.65
2	N/A	N/A	5.50	0.24	0.60	6.00	6.05	0.79	0.72
3	N/A	N/A	5.48	0.20	0.30	5.98	6.05	0.77	0.62
4	N/A	N/A	5.47	0.16	0.17	5.97	6.06	0.75	0.91
5	N/A	N/A	5.49	0.17	1.35	5.99	6.16	0.85	1.87

WL – Water Level

PMF – Probable Maximum Flood

N/A = no peak water level/depth/velocity available in flood event

Climate Change Flood Levels (30% Rainfall intensity and 0.9m Sea Level Rise)

ID	CC 1% AEP Max WL (m AHD)	CC1 % AEP Max Depth (m)
1	5.56	0.18
2	5.53	0.27
3	5.54	0.26
4	5.54	0.23
5	5.55	0.23

WL – Water Level

PMF – Probable Maximum Flood

N/A = no peak water level/depth/velocity available in flood event.

A variable Flood Planning Level might apply. Freeboard is generally 0.5m above the maximum 1% AEP water level. However for overland flow with a depth less than 0.3m and a VelocityxDepth product less than 0.3m²/s, a freeboard of 0.3m may be able to be justified.

APPENDIX – C

Stormwater drainage concept plan

REV. BY

Date

Description

DRA
DES
CHE
SCA
9170

DRAWN	A.M.	PROJEC
DESIGNED	A.M.	NO.2
CHECKED	0.S.	DRAWIN
SCALE	As indicated	BAS
SIZE	A1	

RISE CONSULTING ENGINEERS PTY.LTD.

Date

Description

DRAWN
DESIGNED
CHECKED
SCALE
SIZE

A.M.	PROJECT
	PROPC
A.M.	
	140.20-
0.S.	DRAWING TIT
ated	STORM
A1	

RISE CONSULTING ENGINEERS PTY.LTD.

21066

MUSIC Model Site Area Breakup

Landscape: 252m²

Paving : 86m²

Ground to Pits 9-11: 230m² (93% Perv.)

Receiving Node	Receiving Node	
		2
x1812 Precast Filterra Pits		2x1812 Precast Filterra Pits
rain Effectiveness - Receiving Node	de	Train Effectiveness - Receiving Noc
rain Effectiveness - Receiving Node	de	Train Effectiveness - Receiving Noc
rain Effectiveness - Receiving Node	de	Train Effectiveness - Receiving Nor
rain Effectiveness - Receiving Node Sources Residua	de Sources Residual Loa	Train Effectiveness - Receiving Noc
rain Effectiveness - Receiving Node Sources Residua ML/yr) 1.44 1.4	Sources Residual Load	Train Effectiveness - Receiving Noc (ML/yr)
Sources Residua ML/yr) 1.44 1.4 Suspended Solids (kg/yr) 66.5 9.9	Sources Residual Load 1.44 1.43 66.5 9.99	Train Effectiveness - Receiving Noc (ML/yr) Suspended Solids (kg/yr)
Sources Residua ML/yr) 1.44 1.4 Suspended Solids (kg/yr) 66.5 9.9 Phosphorus (kg/yr) 0.255 0.05	Sources Residual Load 1.44 1.43 66.5 9.99 0.255 0.0582	Train Effectiveness - Receiving Nor (ML/yr) Suspended Solids (kg/yr) Phosphorus (kg/yr)
Sources Residual ML/yr) 1.44 1.4 Suspended Solids (kg/yr) 66.5 9.9 Phosphorus (kg/yr) 0.255 0.05 litrogen (kg/yr) 2.97 1.1	Sources Residual Load 1.44 1.43 66.5 9.99 0.255 0.0582 2.97 1.13	Train Effectiveness - Receiving Nor (ML/yr) Suspended Solids (kg/yr) Phosphorus (kg/yr) Nitrogen (kg/yr)
x1812 Precast Filterra Pits		2x1812 Precast Filterra Pits

A: G03 15-19 ATCHISON STREET, ST LEONARDS NSW 2073 E: admin@riseengineers.com.au P: (02) 8057 9109

PROJECT A M PROPO DESIGNED A.M NO.20-CHECKED 0.S. DRAWING TIT As indicated SCALE MUSIC

RISE CONSULTING ENGINEERS PTY.LTD.

	DRAWING No	REV
DSED APARTMENT BUILDING	חצט ם	R
26 AVON ROAD, DEE WHY, NSW 2099	D.030	
LE	JOB No	
CATCHMENT PLAN	2106	6

A: G03 15-19 ATCHISON STRE ST LEONARDS NSW 2073 E: admin@riseengineers.com.a P: (02) 8057 9109

REET,	
3	
au	
	──□党烈回
_	and the second second

PROJECT PROPO NO.20-2 DRAWING TITLE SECTIO

TYPICAL OCEANGUARD PIT

ARRANGEMENT

TYPICAL FILTERRA BIORETENTION 1812 PRECAST PIT

	DRAWING No	REV
SED APARTMENT BUILDING	040 ח	R
26 AVON ROAD, DEE WHY, NSW 2099	0.040	
E	JOB No	
ON DRAWINGS	2106	6

APPENDIX – D

Flood evacuation plan

	DRAW
	DESIG
	CHEC
	SCAL
1772 DF	

1.	PROJECT PROPOSED APARTMENT BUILDING		REV
1.	NO.20-26 AVON ROAD, DEE WHY, NSW 2099	F.UIU	D
5.	DRAWING TITLE	JOB No	
1	FLOOD EVACUATION PLAN	2106	6
1 1			

LEGEND

ASSEMBLY POINT

1% AEP PREDICTED FLOOD WL: XXXX LEVELS(CARDNO REPORT 2013) OBTAINED FROM COUNCIL

HOW THE STATE EMERGENCY SERVICE CAN HELP YOU

THE STATE EMERGENCY SERVICE (SES) IS RESPONSIBLE FOR DEALING WITH FLOODS IN NSW. THIS INCLUDES PLANNING FOR FLOODS AND EDUCATING PEOPLE ABOUT HOW TO PROTECT THEMSELVES AND THEIR PROPERTY.

DURING FLOODS, THE SES IS RESPONSIBLE FOR FLOOD INFORMATION, SAFETY ADVICE, EVACUATION, RESCUE AND PROVIDING ESSENTIALS TO PEOPLE CUT OFF BY FLOOD WATERS.

FOR EMERGENCY HELP IN FLOODS AND STORMS CALL THE SES ON 13 2500 SES WEBSITE BUREAU OF METEOROLOGY WARRINGAH SHIRE COUNCIL WWW.SES.NSW.GOV.AU WWW.SOM.GOV.AU WWW.WARRINGAH.NSW.GOV.AU

NORTHERN ELEVATION SCALE

GROUND FLOOR LEVEL 7.35(m)

DRIVEWAY CREST LEVEL 6.14(m) FLOOD PLANNING LEVEL 6.04(m)

A: G03 15-19 ATCHISON STREET, ST LEONARDS NSW 2073 E: admin@riseengineers.com.au P: (02) 8057 9109

PROJECT DRAWN A.M. PROPC DESIGNED A.M. NO.20-CHECKED 0.S. DRAWING TITI FLOOD SCALE As indicated A1

RISE CONSULTING ENGINEERS PTY.LTD.

FLOOD WARNING ADVICE

A. KNOW YOUR AREA'S FLOOD HISTORY

COUNCIL HAS ADVISED THAT THE SITE IS AFFECTED BY THE 1 % AEP OVERLAND FLOOD. COUNCIL COMMISSIONED A STUDY ON POTENTIAL FLOODING IN THE AREA. DURING THE 1 % AEP, THE FLOOD LEVEL FOR THE SITE WILL REACH 6.91m AHD AT THE FAR SOUTH EAST CORNER.

THE FLOOD PLANNING LEVEL FOR THIS SITE IS SET AT 6.04m AHD. DURING THE PROBABLE MAXIMUM FLOOD (PMF), THE FLOOD LEVEL WILL ABOVE 6.04m AHD. FLOOD LEVELS FOR THE 1 % AEP AND PMF ARE SHOWN ON THE MAP.

B. HEED WEATHER REPORTS AND WARNINGS FOLLOWING A FLOOD WARNING FOR YOUR AREA, TYPICAL ACTIONS YOU SHOULD TAKE INCLUDE:

1. MOVE VALUABLE/PERSONAL ITEMS TO A SAFE PLACE ABOVE EXPECTED FLOOD LEVEL. OPEN DOORS OF REFRIGERATORS AND OTHER HEAVY AIRTIGHT ITEMS THAT COULD FLOAT, TIP OVER AND BE DAMAGED.

SWITCH OFF ELECTRICITY AND GAS AT SUPPLY POINTS TO THE BUILDING.

PROTECT/RELOCATE STOCK AND EQUIPMENT IN COMMERCIAL/INDUSTRIAL PREMISES. THE EARLIER YOU ACT, THE BETTER YOU WILL BE PREPARED. BOTH DURING AND AFTER A FLOOD, KEEP TUNED TO YOUR RADIO. WHERE POSSIBLE, YOU WILL BE KEPT UP TO DATE WITH THE LIKELY DURATION AND LEVEL OF FLOODING AND WHEN IT IS OVER YOU WILL RECEIVE ADVICE FROM LOCAL AUTHORITIES ON WHERE TO OBTAIN MEDICAL CARE, ASSISTANCE WITH FOOD, CLOTHING, SHELTER AND HOW BEST TO HELP YOURSELF RECOVER. HAVE A BACK-UP PORTABLE RADIO WITH FRESH BATTERIES IN CASE THE POWER IS CUT BY FLOOD WATER

C. PREPARATION FOR FLOOD EVENT

ASK YOUR COUNCIL OR STATE EMERGENCY SERVICE (SES) ABOUT LOCAL FLOOD PLANS (OR RECORDS) WHICH DETAIL PROBLEM AREAS AND EVACUATION ROUTES AND CENTRES. IF YOUR AREA IS FLOOD-PRONE, CONSIDER ALTERNATIVES TO CARPETS (EG REMOVABLE RUGS). IN GROUND-LEVEL ROOMS, TILED WALLS ARE LESS LIKELY TO BE DAMAGED THAN OTHERS AND ARE MORE EASILY CLEANED. HAVE AN EMERGENCY KIT ON HAND WHICH INCLUDES A PORTABLE RADIO, TORCH, AND SPARE BATTERIES; STOCK OF CANNED FOOD AND FRESH WATER; FIRST AID KIT AND MANUAL AND GARDEN GLOVES; WATERPROOF BAGS FOR CLOTHING AND VALUABLES. KEEP A LIST OF EMERGENCY PHONE NUMBERS ON DISPLAY:

1. STATE EMERGENCY SERVICE POLICE

З.

3. NORTHERN BEACHES COUNCIL

WHEN YOU HEAR A FLOOD WARNING OR IF FLOODING APPEARS LIKELY:

1. TUNE TO YOUR LOCAL RADIO FOR WARNINGS AND ADVICE.

2. PREPARE TO MOVE VEHICLES, OUTDOOR EQUIPMENT, GARBAGE, CHEMICALS, AND POISONS TO HIGHER LOCATIONS.

3. PLAN WHICH INDOOR ITEMS YOU WILL RAISE OR EMPTY IF WATER THREATENS TO ENTER YOUR HOME.

4. CHECK YOUR EMERGENCY KIT AND REMEMBER YOUR PETS.

IF YOU NEED TO EVACUATE:

1. IF YOU LEAVE OF YOUR OWN ACCORD, TELL POLICE OR STATE EMERGENCY SERVICE, AND YOUR NEIGHBORS. 2. FIRSTLY, PACK WARM CLOTHING, ESSENTIAL MEDICATION, VALUABLES, PERSONAL

PAPERS, PHOTOS AND MEMENTOS IN WATERPROOF BAGS, TO BE TAKEN WITH YOUR EMERGENCY KIT.

3. RAISE FURNITURE, CLOTHING AND VALUABLES ONTO BEDS, TABLES AND INTO ROOF SPACE (ELECTRICAL ITEMS HIGHEST). 4. EMPTY FREEZERS AND REFRIGERATORS, LEAVING DOORS OPEN (TO AVOID DAMAGE

OR LOSS IF THEY FLOAT ABOUT). TURN OFF POWER, WATER AND GAS AND TAKE YOUR MOBILE PHONE.

5. WHETHER YOU LEAVE OR STAY, PUT SANDBAGS IN THE TOILET BOWL AND

OVER ALL LAUNDRY/BATHROOM DRAIN-HOLES TO PREVENT SEWAGE BACK-FLOW. 6. LOCK YOUR HOME AND TAKE RECOMMENDED EVACUATION ROUTES FOR YOUR AREA. 7. DON'T DRIVE INTO WATER OF UNKNOWN DEPTH AND CURRENT.

IF YOU STAY, OR ON YOUR RETURN 1. STAY TUNED TO LOCAL RADIO FOR UPDATED ADVICE.

DON'T ALLOW CHILDREN TO PLAY IN, OR NEAR, FLOOD WATERS.

3. AVOID ENTERING FLOOD WATERS. IF YOU MUST, WEAR SOLID SHOES

AND CHECK DEPTH AND CURRENT WITH A STICK. 4. STAY AWAY FROM CREEKS, DRAINS, CULVERTS AND WATER OVER KNEE-DEEP.

DON'T USE GAS OR ELECTRICAL APPLIANCES WHICH HAVE BEEN IN FLOOD WATER UNTIL 5. CHECKED FOR SAFETY. 6. DON'T EAT FOOD WHICH HAS BEEN IN FLOOD WATERS.

7. BOIL TAP WATER UNTIL SUPPLIES HAVE BEEN DECLARED SAFE.

	DRAWING No	REV
DSED APARTMENT BUILDING	F 020	B
26 AVON ROAD, DEE WHY, NSW 2099	1.020	
LE	JOB No	
EVACUATION PLAN	2106	6

APPENDIX – E

VD Transects

> -PMF
 ✓ 1-in-100yr ARI
 Water Level
 Depth
 Velocity Times Depth
 → Haard
 > 1-in-10yr ARI
 > 1-in-5yr ARI
 > 1-in-5yr ARI
 > Ground Elevation
 Cadastre + 100yr

0.22 0.18 0.16 0.14 0.12 0.1 0.08 0.06 0.04 0.02 0 V'D [m'/s]

-0.02

ò

